Shrinking Projection Method of Fixed Point Problems for Asymptotically Pseudocontractive Mapping in the Intermediate Sense and Mixed Equilibrium Problems in Hilbert Spaces
نویسنده
چکیده
This paper is concerned with a common element of the set of fixed point for an asymptotically pseudocontractive mapping in the intermediate sense and the set of solutions of the mixed equilibrium problems in Hilbert spaces. The strong convergence theorem for the above two sets is obtained by a general iterative scheme based on the shrinking projection method, which extends and improves that of Qin et al. 2010 and many others.
منابع مشابه
An approximate solution to the fixed point problems for an infinite family of asymptotically strictly pseudocontractive mappings in the intermediate sense, cocoercive quasivariational inclusions problems and mixed equilibrium problems in Hilbert spaces
We introduce a new iterative scheme by modifying Mann’s iteration method to find a common element for the set of common fixed points of an infinite family of asymptotically strictly pseudocontractive mappings in the intermediate sense, the set of solutions of the cocoercive quasivariational inclusions problems, and the set of solutions of the mixed equilibrium problems in Hilbert spaces. The st...
متن کاملThe Shrinking Projection Method for Common Solutions of Generalized Mixed Equilibrium Problems and Fixed Point Problems for Strictly Pseudocontractive Mappings
We introduce the shrinking hybrid projection method for finding a common element of the set of fixed points of strictly pseudocontractive mappings, the set of common solutions of the variational inequalities with inverse-strongly monotone mappings, and the set of common solutions of generalized mixed equilibrium problems in Hilbert spaces. Furthermore, we prove strong convergence theorems for a...
متن کاملShrinking projection methods for solving split equilibrium problems and fixed point problems for asymptotically nonexpansive mappings in Hilbert spaces
In this paper, we propose a new iterative sequence for solving common problems which consist of split equilibrium problems and fixed point problems for asymptotically nonexpansive mappings in the framework of Hilbert spaces and prove some strong convergence theorems of the generated sequence {xn} by the shrinking projection method. Our results improve and extend the previous results given in th...
متن کاملCONVERGENCE THEOREMS FOR ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN THE INTERMEDIATE SENSE FOR THE MODIFIED NOOR ITERATIVE SCHEME
We study the convergence of the modified Noor iterative scheme for the class of asymptotically pseudocontractive mappings in the intermediate sense which is not necessarily Lipschitzian. Our results improves, extends and unifies the results of Schu [23] and Qin {it et al.} [25].
متن کاملApproximating fixed points for nonexpansive mappings and generalized mixed equilibrium problems in Banach spaces
We introduce a new iterative scheme for nding a common elementof the solutions set of a generalized mixed equilibrium problem and the xedpoints set of an innitely countable family of nonexpansive mappings in a Banachspace setting. Strong convergence theorems of the proposed iterative scheme arealso established by the generalized projection method. Our results generalize thecorresponding results...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012